МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

ГУ «РЕСПУБЛИКАНСКИЙ НАУЧНО-ПРАКТИЧЕСКИЙ ЦЕНТР РАДИАЦИОННОЙ МЕДИЦИНЫ И ЭКОЛОГИИ ЧЕЛОВЕКА»

С.Н.Коваль, Г.А.Шишко, И.М.Крастелева, Т.Е.Аликина

Гемодинамический контроль кардиотонической терапии критических состояний у новорожденных

Практическое пособие для врачей

Составители:

Коваль Сергей Николаевич, заведующий отделением анестезиологии и реанимации ГУ «РНПЦ РМ и ЭЧ»;

Шишко Георгий Александрович, д.м.н., профессор кафедры неонатологии УО «БелМАПО»;

Крастелева Ирина .Михайловна, к.м.н., доцент кафедры неонатологии УО «БелМАПО»;

Аликина Татьяна Евгеньевна, заведующий отделением анестезиологии и реанимации с палатами интенсивной терапии УЗ «ГГКБ №3» Гомель

Рецензенты:

Зарянкина Алла Ивановна, к.м.н., доцент, заведующий кафедрой педиатрии с ФПК ИП УО «ГомГМУ»

Коньков Сергей Валентинович, к.м.н., заведующий кафедрой анестезиологии и реаниматологии УО «ГомГМУ»

С.Н.Коваль, Гемодинамический контроль кардиотонической терапии критических состояний у новорожденных / С.Н. Коваль, Г.А. Шишко, И.М.Крастелева, Т.Е.Аликина –Гомель: ГУ «РНПЦ РМиЭЧ», 2024. –26 с.

В пособии освещена одна из наиболее серьезных проблем неонатологии – лечение критических состояний у новорожденных с позиции гемодинамического контроля кардиотонической терапии. В пособии отражены современные взгляды на патогенез, диагностику и лечение данного состояния. Представлены практические подходы к инотропной терапии и поддержке системной гемодинамики, с указанием формул расчета гемодинамически значимых инотропных препаратов. Изложены показания и тактика использования препаратов, ингибирующих фосфодиэстеразу. Авторами представлена современная модель оценки кардиотонической терапии, а именно вазоактивная инотропная оценка которая рассчитывается, как взвешенная сумма всех введенных вазопрессоров и инотропных препаратов и количественно определяет объем фармакологической поддержки сердечно-сосудистой системы у пациентов с наиболее тяжелой комбинированной сердечно-легочной недостаточностью.

Пособие предназначено для врачей-детских анестезиологов-реаниматологов, врачей-неонатологов, врачей-педиатров, клинических ординаторов и интернов по вышеуказанным специальностям, а также студентов старших курсов.

Рекомендовано к изданию на заседании Ученого совета ГУ «РНПЦ РМиЭЧ» протокол №2 от 12.03.2024г.

©Составители: С.Н. Коваль, Г.А. Шишко, И.М.Крастелева, Т.Е.Аликина © ГУ «РНПЦ РМиЭЧ», 2024

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ	5
1. Нарушения гемодинамики у новорожденных и их коррекция	6
2. Становление гемодинамики после рождения и варианты дальнейшего	
развития кровообращения	7
3. Действие препаратов инотропной поддержки	12
4. Эволюция кардиотонической терапии в неонатологии	16
5. Использование силденафила в неонататологии	17
6. Вазоактивная инотропная оценка	20
7. Лактат-ацидоз и гипергликемия	21
ЗАКЛЮЧЕНИЕ	24
СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ	25

Список сокращений

АД – артериальное давление

ГВ - гестационный возраст

ДЛА – давление в легочной артерии

КОС – кислотно-основное состояние

ОПС - общее периферическое сопротивление

ОПСС (SVR) - общее периферическое сосудистое сопротивление (systemic vascular resistans)

ПЛГ - персистирующая легочная гипертензия

ППТ (BSA) - площадь поверхности тела (body surrface area)

CB (CO) – сердечный выброс (cardiac output)

ЧСС - частота сердечных сокращений

ЦВД – центральное венозное давление

ELBW – дети с экстремально низкой массой тела при рождении (ЭНМТ)

NIRS - инфракрасная спектроскопия (near infrared spectroscopia)

VIS - вазоактивная инотропная оценка

Введение

Гемодинамический контроль кардиотонической терапии критических важнейшим состояний новорожденных, являясь фрагментом оценки состояния пациента, требует преодоления подхода «один размер для всех», OT шаблонов И примитивизации, учета отхода динамического физиологического перехода от внутриутробной к неонатальной жизни в контексте сложных основных патологических состояний. Врачи, участвующие в лечении ребенка, должны индивидуализировать свой подход к обстоятельствам. Обсуждаются проблемы конкретным артериальной гипотензии и ее границы у детей с различной массой при рождении и сроком гестации с учетом риска развития шокового состояния [1].

Использование неонатальной эхокардиографии (с соответствующим технологическим обеспечением), ближней инфракрасной спектроскопии (NIRS), других современных технологий гемодинамического перфузионного мониторинга, лабораторных показателей кислотно-основного состояния и метаболических параметров дает важную информацию о реакции на препараты инотропной поддержки в дополнение к руководству по их применению в различных сценариях артериальной гипотонии (кардиогенных или сосудистых), вплоть до развития нарушений микроциркуляции и централизации гемодинамики [1, 2]. Принципиально важной является поддержка гемодинамики ребенка с первых минут жизни, обеспечение комплекса проведения мер интенсивной терапии: респираторной поддержки с использованием положительного давления В конце выдоха обеспечение венозного доступа, достаточной волемии, микроциркуляции (время рекапилляризации!) и минутного сердечного выброса, оптимального температурного режима, коррекции гемостазиологических нарушений. В пособии особенностях не акцентируется внимание на инвазивного мониторинга АД, требующих отдельного глубокого разбора

1. Нарушения гемодинамики у новорожденных и их коррекция

Повышение АД не следует считать успешным, если чрезмерное сужение сосудов вызывает дополнительную нагрузку на сердце – рост общего периферического сопротивления (ОПС) и снижает оксигенацию [4].

Традиционная классификация шокового состояния включает в себя гиповолемию, кардиогенный, дистрибутивный и обструктивный шок. При септическом шоке все эти состояния могут возникать в разной степени в одно и то же время из-за разного воздействия на преднагрузку, постнагрузку и сократимость.

Гиповолемия возникает в результате сочетания относительно уменьшенного объема крови, вызванного вазодилатацией, повышенной незаметной потери воды и повышенной проницаемости капилляров для скопления жидкости в интерстициальном и третьем пространствах.

Вероятно угнетение функции миокарда бактериальными токсинами и воспалительными цитокинами.

Септический шок также может представлять собой сочетание кардиогенного и дистрибутивного шоков из-за периферического расширения сосудов или как обструктивный шок от распростаненного диффузного тромбоза мелких конечных сосудов.

Гемодинамический сценарий можно представить в виде формулы:

Падение
$$CB = \frac{C$$
нижение $AД$ Рост ОПСС

Успешная терапия нацелена на нормализацию АД при снижении (нормализации) ОПС, результируя увеличением СВ.

Ответ на терапию контролируется в динамике, в дополнение к необходимой клинической и лабораторной оценке, с помощью объективных инструментов для оперативного, ориентированного на время управления, нормальную температуру конечностей, достаточный уровень сознания (приемлема оценка по шкале N-PASS), выработку мочи более 1 мл/кг/час и насыщение кислородом центральной венозной крови (svO_2) $\geq 70\%$ [5]. Эти

цели должны достигаться в кратковременные «золотые» сроки для минимизации риска развития тяжелой полиорганной недостаточности и летального исхода. Среди параметров гемодинамики особое внимание уделяется таким взаимосвязанным показателям, как СВ и ОПСС. Приближение к нормативным уровням их — основа достигаемого эффекта интенсивной терапии, следует учитывать фактор времени, обеспечить поддержание оксигенации, метаболических констант и диуреза.

Важный момент - сбалансированное использование волемической инфузионной терапии, препаратов инотропной поддержки (добутамина, допамина, норадреналина, адреналина, милринона и их комбинаций), основанное на гемодинамическом мониторинге (с учетом центрального венозного давления) [3, 4].

2. Становление гемодинамики после рождения и варианты дальнейшего развития кроовообращения

Наиболее сложным с точки зрения оценки эффективности терапии является период ранней адаптации: 10-15 минут после рождения ребенка. За это время должны произойти определенные гемодинамические процессы: подъем системного АД, увеличение легочного кровотока, снижение давления в легочной артерии (рисунок 1).

Оценка эффективности становления оксигенации:

 $spO_2 - 1min - 60-65\%$,

2min - 65-70%,

3min - 70-75%,

4min - 75-80%,

5min - 80-85%,

10min - 85-95% [4,5].

Решение о моменте, когда необходимо вмешаться - важнейший первый шаг.

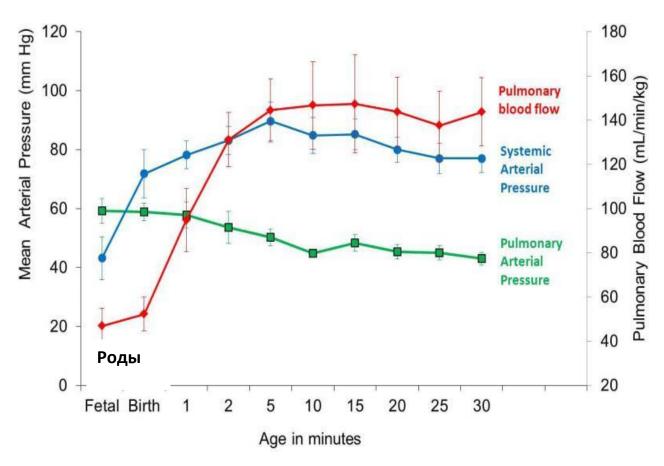


Рисунок 1. Перестройка гемодинамики в первые 30 минут жизни.

Клиническая оценка, несмотря на ее ограничения, в сочетании с параметрами постоянного прикроватного мониторинга (ЧСС, неинвазивное АД, предуктальное и постдуктальное измерение SpO₂, динамическая оценка напряжения и наполнения пульса на периферических артериях, периодические измерение диуреза и уровня лактата), должны обеспечить понимание основного статуса кровообращения.

Инструменты объективной оценки (эхокардиография, ближняя инфракрасная спектроскопия, неинвазивный мониторинг СО₂, предоставляют оценку патофизиологии, важно понимание клиницистами ограничений результатов этих измерений.

Таблица 1 Показатели артериального давления

Неделя гестации	Систолическое АД		олическое АД Диастолическое АД АД		Среднее АД				
	Max	Med	Min	Max	Med	Min	Max	Med	Min
24	68	49	33	46	29	14	53	36	20
25	69	51	36	47	30	15	54	37	22
26	70	52	38	48	31	17	55	38	24
27	71	54	40	49	32	18	56	39	25
28	72	55	41	50	33	19	57	40	26
29	73	56	42	51	34	20	58	41	27
30	78	59	43	52	35	21	60	43	28
31	78	61	46	53	36	22	61	44	30
32	80	62	48	54	37	23	63	45	31
33	81	63	50	55	38	24	64	46	33
34	83	66	51	56	39	25	65	48	34
35	84	69	52	57	40	26	66	50	35
36	87	71	55	58	41	27	68	51	36
37	89	72	57	59	42	28	69	52	38
38	90	75	59	60	43	29	70	54	39
39	91	78	60	60	44	30	70	55	40
40	92	80	61	61	44	30	71	56	40
41	93	81	62	62	46	31	72	58	41
42	95	82	63	63	47	32	74	59	42
43	97	83	65	64	48	33	75	60	44
44	98	86	66	65	49	34	76	61	45

Можно рассматривать систолическое давление 55 mmHg, среднее значение 35 mmHg, и диастолическое давление 25 mmHg в качестве нижних пределов нормального системного артериального давления для доношенных новорожденных в течение первой недели после рождения [6].

Полученные данные показывают широкий диапазон показателей, затрудняя их клиническую интерпретацию.

Информация о сердечном выбросе и системном сосудистом сопротивлении (системные показатели гемодинамического мониторинга), необходима для выявления неадекватной перфузии и оксигенации тканей на ранней стадии до развития необратимых повреждений при развитии шокового состояния.

Гемодинамический ответ на начатое лечение оценивают регулярно, изменения сердечно-сосудистой функции происходят быстро, иногда фульминантно.

Каждый день неонатологи определяют признаки нестабильности гемодинамики у маленьких пациентов (гарантирует ли нормальное артериальное давление адекватную перфузию и доставку кислорода?).

Наиболее чувствительны недоношенные дети, нарушения церебральной гемодинамики увеличивались с воздействием допамина дозис-зависимым образом, достигая пика при концентрации 10-15 мкг/кг/мин [7].

Цель: подобрать режим терапии, обеспечивающий приемлемые для конкретного пациента показатели неинвазивного АД, СВ, ОПС, ДЛА и церебральной оксигенации [7, 8, 9].

Таблица 2. Референтные диапазоны CB и ОПС в зависимости от гестационного возраста [9].

ГВ недели	CO (1 min – 1)	SVR (dyn·s cm-5)
29 - 30	0.29±0.06	10 959±3393
31 - 32	0.35±0.07	8931±2827
33 - 34	0.35±0.07	9911±2722
35 - 36	0.43±0.08	8539±1849
37 - 38	0.47 ± 0.10	8534±2405

Таблица свидетельствует о наиболее сложной ситуации у детей с сроком гестации менее 34 недель, проявляется низким CB и высоким ОПСС.

Для расчета СВ и ОПСС используют информацию таблицы 2 и формулу.

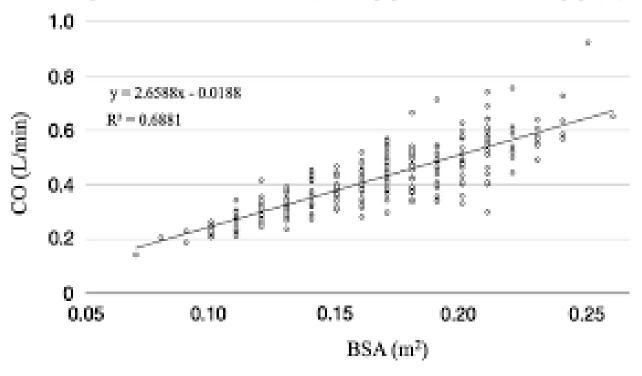


Рисунок 2 Корреляционная зависимость CO (CB) и ППТ (BSA)

ППТ $M^2 = 0.05 \times Macca$ тела+0.05

CB
$$(1 \min - 1) = 2.65 \times \Pi\Pi T + 0.018$$

Расчет среднего АД при отсутствии автоматического контроля по формуле:

АДсреднее = ДАД +
$$\frac{\text{САД} - \text{ДАД}}{3}$$

ОПСС= $\frac{\text{АДсреднее} - \text{ЦВД}}{\text{СВ}} \times 80 \text{ dyn} \cdot \text{s cm} - 5$

Примеры расчетов:

Масса тела 3кг, срок гестации 40 недель. ППТ- 0.2м², CB 0.4 - 0.5; АД 75/40 mmHg, среднее АД 52 mmHg, пульсовое АД 35 mmHg, ОПСС 10400 dyn·s cm-5 Верхний предел нормы, при референтном диапазоне 8539 ± 1 849, мин 6649, макс 10338

В динамике ухудшение: рост О2-завимости и лактата

АД 75/55 mmHg, среднее АД 60 mmHg, пульсовое АД 20 mmHg, ОПСС 12400 dyn·s cm-5 pocт ОПСС.

При отсутствии положительной динамики (рост O_2 -зависимости, время рекапилляризации более 2 сек, диурез менее 1 мл/кг/час, лактат-ацидоз — рекомендовано использование NIRS (near infrared spectroscopia - инфракрасная спектроскопия).

Высокий уровень ОПСС может ассоциироваться с легочной гипертензией → целенаправленный диагностический поиска ПЛГ [11].

3. Действие препаратов инотропной поддержки

Пять различных дофаминовых рецепторов делят на две категории. Рецепторы D1 и D5 группируются вместе, D2, D3, D4 составляют отдельную группу. Рецепторы D1 и D5 соединяются со стимулирующими сайтами G и активируют аденилатциклазу.

В национальной канадской базе данных сообщается, что 10% новорожденных в возрасте до 29 недель лечились препаратами инотропной поддержки в первые – третьи сутки (0-36%) в 27 отделениях интенсивной терапии.

Эти цифры аналогичны приведенным Lasky et al. в отделении интенсивной терапии (США) [11]. Необходимость в проведении значительной инотропной поддержки, обусловленная характером и тяжестью патологии, коррелировала с повышенной смертностью (после поправки на пол, срок гестации и оценку по шкале Апгар).

Допамин: симпатомиметический катехоламин, проявляющий альфаадренергический, бета-адренергический и дофаминергический агонизм. На эффекты допамина в разных дозах влияют:

- эндогенные запасы норадреналина,
- функции альфа- и бета-адренергических и дофаминергических рецепторов,

• способность сердца новорожденного увеличивать ударный объем (ответ индивидуален).

Допамин метаболизируется быстро и эффективен при внутривенном введении путем непрерывной инфузии, период полувыведения составляет 2 минуты (как и у других катехоламинов). Информация о связывании с белками отсутствует, 97% выводится с мочой в виде метаболитов.

Эффекты препарата зависят от дозы:

- низкие дозы: 1-5 мкг/кг/мин, незначительное влияние на частоту сердечных сокращений или сердечный выброс, увеличение почечного кровотока сопровождается увеличением диуреза, мезентериального улучшением перфузии кишечника [19];
- промежуточные дозы: 5-10 мкг/кг/мин, увеличение сократительной способности сердца и сердечного выброса приводит к увеличению кровотока и частоты сердечных сокращений;
- высокие дозы: более 10 мкг/кг/мин, преобладают альфаадренергические эффекты: повышение системного и легочного сосудистого сопротивления, снижение кровотока и снижение сердечного выброса у новорожденных, особенно в первые дни жизни, снижение нормальной адекватной перфузии.

У новорожденных и грудных детей действие допамина менее выражено, чем у более старших возрастных групп, менее выражена контрактильность, максимально возможный инотропный эффект невелик [18].

Возможны побочные эффекты допамина, в результатах одного исследования смертность у детей, получающих дофамин, значительно выше, чем у детей, получающих адреналин за короткий период времени при септическом шоке [12].

Тем не менее, нет статистической разницы в смертности между дофамином и адреналином в лечении педиатрического или неонатального септического шока, основанного на результатах данного метаанализа.

В исследованиях последних лет прослеживается тенденция к изменению стартовых дозировок инотропных препаратов, основанная на исследовании региональных кровотоков: коронарного, почечного, церебрального, мезентериального, по данным близкой к инфракрасной спектроскопии.

У недоношенных новорожденных дофаминергические рецепторы, экспрессируемые в почечных, брыжеечных и коронарных сосудистых руслах, активируются при очень малых дозах (0,5–2 мкг/кг/мин) в дополнение к тем, которые регулируют тубулярный ионный поток.

Клинические изменения в выделении мочи могут быть дофаминергическими по природе из-за увеличенного почечного кровотока. Предполагают, что α1-вазопрессивные эффекты возникают при 2–5 мкг/кг/мин, перекрываются β1-инотропными эффектами (4–10 мкг/кг/ мин у недоношенных детей).

В публикациях дозы используемого дофамина не были указаны, но препарат вводился в лечебной дозе при гипотензии.

Важно для клинической практики то, что низкие дозы допамина (0,5-2 мкг/кг/мин) воздействуют на дофаминергические рецепторы, увеличивая перфузию почек.

Средние дозы (2-6 мкг/кг/мин) воздействуют на β-рецепторы, вызывая вазодилатацию и положительный инотропный и хронотропный эффект (увеличение выброса и частоты сердечных сокращений). В высоких дозах (>6-10 мкг/кг/мин) дофамин действует на α-рецепторы, приводя к росту ОПС.

В проведенном исследовании (18 недоношенных детей), высокая доза дофамина (>10 мкг/кг/мин) оказывала непредсказуемое влияние на давление в легочной артерии, изменяя соотношение системных и легочных артериальных давлений, усиливая шунтирование справа налево через артериальный проток, несколько усугубляя гипоксию тканей [13].

Адреналин представляет собой эндогенный катехоламин, действует напрямую, в зависимости от дозы на адренорецепторы $\alpha 1$ (>0,1 мкг/кг/мин) и $\alpha 2$, $\beta 1$ и $\beta 2$ (0,02–0,1 мкг/кг/мин).

По мере увеличения дозировки эпинефрина вазоконстрикция более выраженная, тахикардия нарастает, кровоток в кишечнике и почках уменьшается, растет потребление кислорода, все еще наблюдается некоторое инотропное действие, и увеличивается кровоток к мозгу и сердцу → дополнительный стресс для уже скомпримированного сердца новорожденного и периферических тканей.

Таким образом, можно констатировать, что гемодинамический контроль кардиотонической терапии критических состояний новорожденных, являясь важнейшим фрагментом оценки состояния пациента, требует учета гестационного возраста, перинатальных факторов и оценку состояния при рождении, особенностей перехода от эмбриональной к неонатальной жизни в контексте сложных основных состояний. Повышение АД не следует считать успешным, если чрезмерное сужение сосудов вызывает дополнительную нагрузку на сердце (рост ОПС) и снижает оксигенацию.

Фото1. Ребенок с генерализованной ВУИ. ИВЛ, капнография, ЦВК (проведен через v.axillaris в VCS, инвазивное измерение АД (a. radialis)

4. Эволюция кардиотонической терапии в неонатологии

Стартовая инотропная терапии артериальной гипотензии в первые три дня детей с ЭНМТ при миокардиальной дисфунции включает добутамин (практически с первых минут жизни!), далее добавляют допамин, при неэффективности - адреналин и, наконец, гидрокортизон. Использование норадреналина у данной категории пациентов исключено, в целом, данный препарат не находит широкого применения в неонатологии (например, в Федеративной Республике Германия норадреналин практически не используется в неонатологии с 2010 года) [20]. Препарат занимает свою нишу в лечении септического шока, в периоперативной неонатальной и детской кардиоанестезиологии.

В зависимости от клинического ответа было выдвинуто предложение о периодизации септического шока с выделением следующих клинических ситуаций: допамин-резистентный и рефрактерный к жидкостной нагрузке шок, катехоламин-резистентный и рефрактерный шок.

Полученные результаты сравнивают с табличными данными для уточнения гемодинамической ситуации и коррекции терапии. Проведение этих вычислений не заменяет эхокардиографию и оценку региональной оксигенации (NIRS) [10], а только подтверждает необходимость гемодинамического контроля, начиная от начала проведения первичной реанимации.

При отсутствии положительного клинического эффекта (низкий диурез, лактат-ацидоз, гипергликемия, рост ОПС, ПЛГ, снижение региональной оксигенции), необходима коррекция гемодинамической терапии.

Пример: оценка гемодинамической ситуации у ребенка сроком гестации 35 недель, масса 1800 г при рождении. Перинатальный фон: гнойный хориоамнионит, фуникулит, оценка по шкале Апгар 3/5.

16.00 pH 7.0, ИВЛ $100\% \text{ O}_2$, болюс физ. p-pa 20 мл, допамин 10 мкг/кг/мин.

17:00 АД 60/50 mmHg, среднее АД 53 mmHg; основные клинико-лабораторные данные: ИВЛ – HFOV, O_2 100%, время рекапилляризации более 3 сек, лактат 12 mmol/l, анурия. Референтные диапазоны СВ 0,4 (l min – 1), ОПС 10600 (dyn s cm -5).

Учитывая критические параметры клиники, необходима коррекция гемодинамики: допамин 5 мкг/кг/мин + добутамин 10 мкг/кг/мин (АД 60/40 mmHg, среднее АД 47, снижение ОПС 9400).

Появился диурез.

- 1 вариант:
- уменьшение скорости введения дофамина до 5-7 мкг/кг /мин;
- уменьшение скорости введения адреналина до 0,1 мкг/кг /мин;
- включение добутамина до 10-15 мкг/кг/мин;
- 2 вариант:
- если высокое ОПС при скорости введения дофамина 2-5 мкг/кг /мин и скорости введения адреналина до 0,05 мкг/кг /мин;
- включение добутамина до 15-20мкг/кг/мин.
- 3 вариант:
- высокое ОПС и ПЛГ милринон или силденафил, ингибиторы фосфодиэстеразы милринон и силденафил (назначение этих препаратов связано с изменением концентрации циклических нуклеотидов (ц-АМФ, ц-ГМФ).

5. Использование силденафила в неонатологии

Возможно применение препарата *силденафил* в виде внутривенного или орального введения. Оптимальная доза орального силденафила у новорожденных и детей в настоящее время не совсем определена. Британский национальный формуляр для детей рекомендует дозы от 0,5 мг/кг до 2 мг/кг каждые 6 часов.

Клиническими показателями успешного ответа: улучшенные показатели оксигенации, а именно увеличение на 10% SaO₂ с уменьшением разницы между значениями до и после протоков, увеличением на 3 кПа в PaO₂, возможностью снижения FiO₂, увеличением а/ApO₂ (артериально-альвеолярно соотношение) и уменьшение OI (индекса оксигенации). Время отклика может варьировать от 20 минут до 3 часов после перорального приема.

Продолжительность лечения окончательно не определена, один из практикуемых подходов - наблюдать индивидуальный ответ ребенка и прекращать прием лекарств после видимого улучшения и стабилизации состояния младенца (таблица 3).

Лечение следует прекратить после применения 6-8 доз, если нет улучшения, снижение дозы или прекращение лечения необходимо, если гипотония развивается, несмотря на инотропную поддержку [11, 14].

Таблица 3 Клинический случай, демонстрирующий эффективность силденафила при легочной гипертензии

Динамика параметро в ИВЛ и инотропно й терапии Ребенок Е. №16218

ивл	14.04.	15.04.	16.04.
Freq. 1/min	65	50	
FiO ₂ %	100	92-40	60-35
Pin	35	30	24
PEEP	5	5	5
Tin	0,4	0,4	0,4
Tin:Tex	1:2,3	1:1,3	1:1,3
Dopmin μg/kg/min	20	20	10
Dobutamin μg/kg/min		20	10
Epinephrin μg/kg/min	0,5	0,5	0,1
Sildenafil 4 мг через 6 часов.	+	+	
Давление в ЛА mm Hg	95	75	

Милринон: 1 мг/мл (1000 мкг/мл) флакон. Рабочая концентрация 100 мкг/мл, максимальная концентрация 200 мкг/мл. Доза насыщения 75 мкг/кг за час, поддерживающая доза 0,5 мкг/кг/мин за 24 часа.

Расчет для 3 кг: доза насыщения 225 мкг, рабочая концентрация 200 мкг/мл.

Milrinoni 2,2 ml

Sol. Natrii Chloridi 0,9%-8,0, скорость 10 мл/час

Доза поддержки 0,5 мкг/кг/мин за 24 часа.

При наличии тяжелой вазоплегии или правожелудочковой недостаточности - добавление норадреналина 0,02–0,05 мкг/кг/мин (адаптация практики от педиатрических кардиоанестезиологов) [15].

Кроме того, норадреналин может улучшить работу как желудочков, так и коронарного систолического АД. Если сократительная способность желудочков нарушена, следует проявлять осторожность при чрезмерной системной вазоконстрикции, которая приводит к увеличению постнагрузки и потребности миокарда в кислороде и ухудшает сократительную функцию желудочков сердца, приводит к развитию электрической нестабильности миокарда.

Согласно данным [12] 9 пациентов ответили на оральное введение силденафила при ПЛГ в дозе от 0,3 ло 1,0 мг/кг доза каждые 6-8 часов. Это было представлено в литературных источниках как стандартная терапия ПЛГ без серьезных побочных эффектов, только одному ребенку в этой когорте потребовалась ингаляция NO.

В случаях, когда лечение ингаляционным илопростом, ECMO или INO невозможно, пероральный силденафил может быть альтернативным вариантом терапии.

6. Вазоактивная инотропная оценка

Вазоактивная инотропная оценка (VIS) рассчитывается как взвешенная сумма всех введенных вазопрессоров и инотропных препаратов и количественно определяет объем фармакологической поддержки сердечнососудистой системы у пациентов с наиболее тяжелой комбинированной сердечно-легочной недостаточностью.

Установлено, что смертность значительно варьировала в зависимости от VIS ^{max} и была универсальной при VIS ^{max} >30. VIS ^{max} был легко поддающимся количественной оценке показателем вазоактивно-инотропной поддержки, которая была тесно связана с риском смертности в этой уязвимой популяции. Возможность объективно и воспроизводимо охарактеризовать гемодинамическую поддержку конкретного пациента является важным первым шагом в неонатологии, который может быть использован в будущих клинических исследованиях для улучшения классификации пациентов и ухода за ними.

Вазоактивный инотропный балл у детей 0,1 мкг/кг/мин адреналина эквивалентен 10 мкг/кг/мин дофамина. Это значит, что включение в программу инотропной терапии пациента, получающего допамин со скоростью 10/мкг/кг/мин, адреналина 0,1 мкг/кг/мин будет фактически увеличивать скорость введения до 20 мкг/кг/мин по допамину.

VIS = дофамин (мкг/кг/мин) + добутамин (мкг/кг/мин) + $100 \times$ адреналин (мкг/кг/мин) + $100 \times$ норадреналин (мкг/кг/мин) + $10 \times$ милринон (мкг/кг/мин) мин) + $10 \times$ вазопрессин (мкг/кг/мин) + $50 \times$ левосимендан (мкг/кг/мин) [11].

Вазопрессин может быть применен при катехоламинрезистентном шоке, не является рутинным препаратом, дозировка: 0,0002 – 0,006 мкг/кг/мин [16].

Прямая связь между уровнями VIS: было обнаружено, что VIS $^{\rm max}$ 20-24 в первые 24 часа или VIS $^{\rm max}$ 15-19 в последующие 48 часов после операции на врожденном сердце у младенцев была связана с более высоким риском смерти

(в больнице или в течение 30 дней после выписки). Чаще диагностировались остановка сердца, потребность в механической поддержке кровообращения, потребность в заместительной почечной терапии или повреждение центральной нервной системы по сравнению с группой «низкого риска» (VIS max < 3) [6]. Среди детей с сепсисом, поступивших в отделение интенсивной терапии, $Haque\ et\ al.$ обнаружили, что VIS макс. > 20 было связано со 100% смертностью [12]. Максимальные баллы VIS в нашей когорте были выше, чем у младенцев и детей из предыдущих исследований [6, 8, 12]. 87% (58/67) пациентов с VIS $^{\rm max}$ >20 умерли, а общая смертность имела место при VIS $^{\rm max}$ > 30. Допамин был почти всегда первым лекарством и включен в 99% (239/241) схем лечения, которые мы изучали. Выбор препаратов для начальной вазоактивно-инотропной терапии в этой когорте был аналогичен предыдущим исследованиям у детей с очень низкой массой тела при рождении (<1500 г) [4, 6].

VIS = дофамин (3мкг/кг/мин) + добутамин (5мкг/кг/мин) + $100 \times$ адреналин (0,02мкг/кг/мин) + $100 \times$ норадреналин (0,05мкг/кг/мин) + $10 \times$ милринон (0,05мкг/кг/мин) = 20.

VIS ^{тах} является объективной мерой гемодинамической/сердечнососудистой поддержки, которая была непосредственно связана со смертностью у крайне недоношенных детей с ELBW.

VIS ^{max} представляет собой важный шаг на пути к прецизионной медицине новорожденных и стратификации риска крайне недоношенных детей с ELBW.

7. Лактат-ацидоз и гипергликемия

При достижении доз адреналина более 0,1–0,2 (0,5) мкг/кг/мин, наблюдают развитие сопутствующих побочных эффектов - лактат-ацидоза и гипергликемии (рисунок 3, 4).

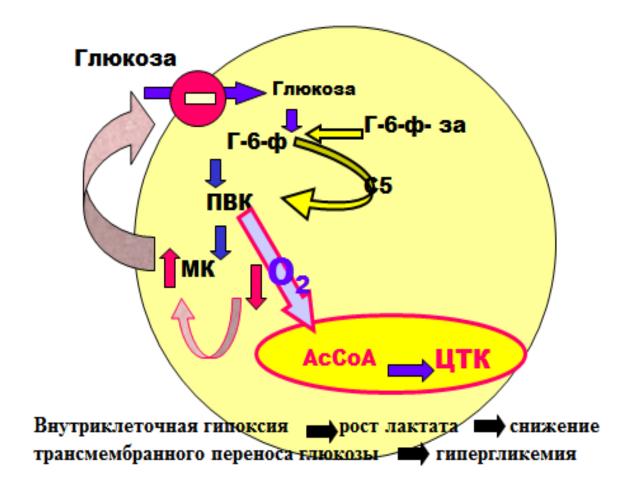


Рисунок 3 Механизм развития гипергликемии

Главные показания для назначения адреналина — тяжелые нарушения контрактильности (например, сепсис), нарушенная функция миокарда после оперативного вмешательства, реанимационные мероприятия, лечение постреанимационной болезни [17].

реб.С. N3135 Д-з: Асфиксия тяжелой степени. РДС БГМ 4

Рисунок 4. В ответ на эпизоды гипоксемии ребенок реагирует лактатацидозом и гипергликемией

Вазоактивные и инотропные препараты, стандартно используемые для лечения гипотонии и сердечно-сосудистой дисфункции, имеют риск гипергликемии вследствие лактат-ацидоза и контринсулярного эффекта.

С целью купирования этого осложнения под контролем гликемии рекомендуется введение инсулина (актрапид) со стартовой скоростью 0,01 ед/кг/час (до 0,1 ед/кг/час), при условии обеспечения адекватной волемии кристаллоидными препаратами и дотации раствора глюкозы (контроль КОС, гликемии, ОАМ)

Заключение

Более глубокое распознавание определяющего тяжесть состояния у недоношенного и доношенного новорожденного ребенка должно позволить улучшить выбор терапевтических стратегий, варьирующих от тщательного постоянного наблюдения до немедленного вмешательства с использованием объема и/или инотропной терапии.

Клиническая оценка, несмотря на ее ограничения, в сочетании с доступными параметрами непрерывного мониторинга у постели пациента, такими как ЧСС и неинвазивное АД, периодическими измерениями диуреза, значения уровня венозного лактата и параметров КОС в месте оказания медицинской помощи, должна обеспечить лучшее понимание основного состояния кровообращения.

Различные современные инструменты объективной оценки, включая эхокардиографию, спектроскопию ближнего инфракрасного диапазона и неинвазивный мониторинг СВ дают более полную картину основной патофизиологии.

С увеличением количества различных устройств мониторинга и диагностики, обеспечивающих актуальную оценку состояния кровообращения, принятие решений становится несколько более сложным, требующих соответствующей подготовки, но вселяет надежду на принятие обоснованного рационального подхода по применению всего арсенала интенсивной терапии и достижения оптимальных результатов лечения наших маленьких пациентов.

Список используемой литературы:

- 1. Интегрированная программа оптимизации кислородного статуса головного мозга у новорожденных с респираторными расстройствами по данным региональной оксигенации / Д. Н. Санковец, Т. В. Гнедько, А. Н. Витушко, О. Я. Свирская // Весці Нац. акад. навук Беларусі. Серыя мед. навук. 2021. Т. 18, № 1. С. 16–24.
- 2. Влияние кардиореспираторного статуса на церебральную оксигенацию у новорожденных с дыхательными расстройствами / Д. Н. Санковец, А. Н. Витушко // Неонатология: Новости. Мнения. Обучение. 2020. № 2. С. 13–20.
- 3. Christoph E.Schwarz, Eugene M.Dempsey Management of Neonatal Hypotension and Shock, October 2rs in Fetal and Neonatal Medicine Volume 25, Issue 5.
- 4. Chloe Joynt 2018; 6: 86. Published online 2018 Apr 13. Treating Hypotension in Preterm Neonates With Vasoactive Medicatio Front Pediatr. 2018; 6: 87.2018 Apr 5. doi: 10.3389/fped.2018.00087 Sabine L. Vrancken, Arno F. van Heijst, and Willem P.
- 5. Turk Pediatri Ars. 2018; 53 (Suppl 1): S65–S75. Neonatal hemodynamics and management of hypotension in newborn. Dilek Dilli, Hanifi Soylu, and Neslihan Tekin.
- 6. Nina S Solanki, Suma B Hoffman Association between dopamine and cerebral autoregulation in preterm neonates ² Pediatr Res 2020 Oct;88:618-622.
- 7. Pediatric Research volume 79, pages 55–64 (2016). Reference values of regional cerebral oxygen saturation during the first 3 days of life in preterm neonates 2015 Jun; 20 (3):164-7.
- 8. Association between dopamine and cerebral autoregulation in preterm neonates. Neonatal hemodynamics: from developmental Physiology to comprehensive care. Sabine L. Vrancken, Arno F. van Heijst, and Willem P. de

- 9. Thomas Alderliesten. Neonatal Hemodynamics: From Developmental Physiology to Comprehensive Sabine L. Vrancken, Arno F. van Heijst, and Willem P. de Boode.
- 10. Pediatric Research volume 79, pages 55–64 (2016) Reference values of regional cerebral oxygen saturation during the first 3 days of life in preterm neonates.
- 11. Hsu1, T-W Wu1, Y-C Wang Journal of Perinatology (2016), 1−5 © 2016 Nature America. Hemodynamic reference for neonates of different age and weight: a pilot study with electrical cardiometry.
- 12. Lingling Wen and Liangyin Xu Ital J Pediatr. 2020; 46: 6. The efficacy of dopamine versus epinephrine for pediatric or neonatal septic shock: a meta-analysis of randomized controlled studies.
- 13. Hakam Yaseen, Maha Darwich, and Hossam Hamdy, Abdul Rahman M. Alnemri, MD J Clin Neonatol. 2012 Oct-Dec; 1(4): 171–175. Is Sildenafil an Effective Therapy in the Management of Persistent Pulmonary Hypertension.
- 14. Abdul Rahman M. Alnemri, Saudi Med J. 2017 January; 38(1): Black lung persistent pulmonary hypertension of the newborn Saudi experience with sildenafil and nitric.
- 15. Sandrio S,· 2022. Most patients received norepinephrine as vasopressor of choice, only two patients in V-VA Treating Hypotension in Preterm Neonates With Vasoactive Medic.
 - 16. Manual of Neonatal Care 2012, Lipincott Williams & Wilkins.
- 17. Maier R, Obladen M, Neugeborenenintensivmedizin, 9.Auflage, 2017, Springer.
 - 18. Joehr M, Kinderanaesthesie, 10. Auflage, 2023, Elsevier.
- 19. Roos R, Genzel-Boroviczeny, Proquitte H, Neonatologie, Das Neo-ABC, 5. Auflage, 2015, Thieme.
- 20. Neonatologie. Die Medizin des Frueh- und Reifgeborenen, 1.Auflage, 2010, Thieme.

Подписано в печать 12.03.2024 г. Формат 60x84 1/16. Бумага офсетная. Гарнитура Таймс. Ризография. Усл. печ. л. 1,6. Тираж 20 экз. Заказ № 7.

Отпечатано в ГУ «Республиканский научно-практический центр радиационной медицины и экологии человека». Свидетельство № 1/410 от 14.08.2014 г. 246042, Гомель, ул. Ильича, 290